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Synthesis of Asperdiol

Summary: A diastereoselective macrocyclization of an
aldehydoallylic bromide using Cr(II) is described which
allows a convenient synthesis of the 14-membered cem-
branoid asperdiol.

Sir: Asperdiol is a cembranoid antitumor agent that was
isolated from a gorgonian and identified as 1 by Wein-
heimer and van der Helm in 1977.! Its structure poses
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an interesting problem for the developing methodology of
remote asymmetric induction and suggested to us an at-
tractive approach based on a diastereoselective macro-
cyclization. The key step of this approach is a threo-se-
lective cyclization that is directed by a conformational bias
originating from the remote epoxide function in 2. In this
paper, we describe a simple preparation of 2 and its
diastereoselective conversion to asperdiol.?

Preparation of the two segments necessary for assembly
of 2 started from hydroxytetrolic acid and geraniol. Pure
E hydroxy acid 3 was prepared by adding excess iso-
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hexenylmagnesium bromide to hydroxytetrolic acid in the
presence of Li,CuCl, (THF, —78° — 25°; 756%). This re-
action is related to previous additions of organocopper
reagents to acetylenic acids and alcohols,® but its high
stereoselectivity may simply reflect a fortuitous loss of the
Z isomer as the butenolide.! Conversion to the bis-
[(benzyloxy)methyl] derivative (BnOCH,CI, i-Pr,NEt) and
reduction (LiAlH,, Et,0) gave an alcohol, that which was
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the crude product consisted of a 2:3 ratio of hydroxy acid to methyl-
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protected (¢t-BuPh,SiCl, imidazole, DMF) to give 4 (60%
overall). Allylic oxidation (catalytic SeQ,, t-BuOOH) and
epoxidation (VO(acac),, t-BuOOH)® gave an epoxy alco-
hol,® which was mesylated (MsCl, Et,N) and displaced with
LiBr/acetone to provide the first segment (5, X = Br; 60%
overall). The second segment, 6, was prepared from ger-
anyl acetate by allylic oxidation as above and direct phe-
nylselenation (PhSeSePh, NaBH,, EtOH; 64%).
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Alkylation of the dianion of 6 (2 equiv of LiNiPr,, THF,
-55 °C) with bromide 5 at low temperature (=70 °C, 5 min)
gave the coupled product in 82% yield. The phenylseleno
group was then removed with W-2 Raney nickel in acetone
(>95%); however, substantial positional isomerization of
the associated C10-C11 olefin occurred during the re-
duction (ratio of trisubstituted:disubstituted olefin 2:1).
Other reductants (BusSnH, Na[Hg]) gave similar results
as did other methods® using phenylthio or phenyl sulfone
analogues. Although pure 7 could be isolated on a gram
scale by using AgNO;-impregnated gel, the mixture of
olefins served as well for the preparation of 1.
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Final refunctionalization of 2 (X = Br, R =

CH,0CH,Ph) in preparation for macrocyclization con-
sisted of conversion to the allylic chloride ((Me,N);P, CCl,,
THF; 87%), desilylation (1 M Bu,NF, THF; 94%), oxi-
dation (MnO,, CH,Cl,; 75%), and conversion to the
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bromide (LiBr, THF; >95%). A number of potential
macrocyclizations based on known homoallylic alcohol
preparations® were examined. While cyclizations using
related allylsilanes and stannanes with Lewis acids or using
relatively reactive allyl organometallics failed, the threo-
selective Hiyama/Heathcock!® reaction using CrCl, (5
equiv, THF) was effective at cyclizing 2 (4 mM concen-
tration, 25 °C, 6 h) and gave a 4:1 mixture of the desired
isomer 8 and its diastereomer 9 in 64% combined yield.
The product appeared as a single spot on TLC but was
readily separated on a 50-mg scale by MPLC. The 4:1
mixture was formed only from 7 since the same distribu-
tion was obtained on cyclizing either pure 7 or the mixture
of olefinic isomers produced by the deselenation described
above. Deprotection of 8 (Na/NH;, 78 °C, <1 min; 51%)
gave racemic asperdiol (1). An authentic sample of 1 was
not available, and the assignment was made by comparison
with published spectral data including 'H and *C NMR.
The identity of the minor product 9 as the other threo
diastereomer was shown by separate epoxide deoxygena-
tions of the acetates of 8 and 9 (3-methyl-2-(selenoxo)-
benzothiazole, CH,Cl,, 25 °C, 5 h; 35-50%)!! to yield a
single deoxy derivative.

To analyze the remote stereoselection of the cyclization,
we adopted a simplified molecular mechanics model of the
cyclization transition state based on the premises that
threo selection is an inherent property of the Cr(II) re-
action!®® and that stereoselection for a particular threo
diastereomer depends on the relative strain of the con-
formations of the ring being formed. The model was
constructed by starting with a gauche C2-C1-C14-C13
dihedral array (the putative threo-transition-state geom-
etry) and generating (30° dihedral angle resolution) and
energy minimizing all ring conformations of 8 and 9.
Depending on the particular C1,C14 substitution and
length of the forming C1-C14 bond, two to five confor-
mations each of 8 and 9 were found within 1 kcal of the
ground-state structure. Our simple model thus shows no
great preference for either 8 or 9, and the observed 4:1
product distribution may well reflect transition-state
contributions from several macrocycle conformations.
Interestingly, the epoxide oxygen is calculated to prefer
the less-hindered faces of the various conformations of 8
and 9 by an average of 5 kcal/mol.

In conclusion, diastereoselective macrocyclization pro-
vides an efficient approach to stereochemically complex
macrocycles since it simultaneously creates a large ring and
new asymmetric centers. As demonstrated, the chemical
yields of such processes can be quite acceptable. Although
complete stereocontrol by our remote epoxide was not
found, a substantial and synthetically useful remote bias
was observed.!?

Supplementary Material Available: Complete experimental
and spectral data of compounds 1-9 (9 pages). Ordering infor-
mation is given on any current masthead page.
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Total Synthesis of ()-Fortamine and
(£)-2-Deoxyfortamine

Summary: The efficient conversion of 1,3-cyclohexadiene
(7) to the aminocyclitols (£)-fortamine (4, 13 steps, 30%
overall yield) and (*)-2-deoxyfortamine (5, 10 steps, 54 %
overall yield) features four regiospecific epoxide-opening
reactions.

Sir: In 1977 researchers at Kyowa Hakko Kogyo Co. and
Abbott Laboratories reported! the discovery of a new group
of broad spectrum antibiotics of the aminocyclitol class,?
the fortimicins, which feature a 1,4-diaminocyclitol bearing
a diamino sugar on the C-6 oxygen and an aminoacyl group
on the C-4 nitrogen. Three important and representative
fortimicins are fortimicin A (1),!¢ istamycin A (2),% and
sporaricin A (3),* which differ in stereochemistry at C-1
and in substitution at C-2 and in the diamino sugar. The
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1, R'=NH,; R?= H; R* = OH; R* = H,NCH,CO,
R*= 6-epipurpurosamine B
2, R'= NH,; R*=R*= H; R* = HNCH,CO,
¢ = purpurosamine C
3,R'=R%*=H;R?= NH,; R*= H,NCH,(O,
$ = G-epipurpurosamine B
4, R'=NH,;R*=R*=R*=H;R*=OH
5, R'=NH,;R*=R’=R*=R*=H
6, R'=R?*=R*= R%=H;R?=NH,

respective aminocyclitols are fortamine (4), 2-deoxyfort-
amine (5), and sporamine (6, 2-deoxy-1-epi-4).> While
previous fortimicin synthetic work has concentrated on
modification of the natural antibiotics and the use of am-
inoglycosides and cyclitols as starting materials®!! we have
embarked on a program of synthesis of aminocyclitol an-
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